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Abstract

The goal of this paper is to sketch a broader outline of the mathematical structures present in the
Nonlinear Maxwell Theory in continuation of work previously presented in [J. Reine Angew. Math.
514 (1999) 1; Phys. Lett. A 228 (1997) 347; A. Sowa, Commun. Math. Phys., cond-mat/9904204,
in press]. In particular, I display new types of both dynamic and static solutions of the Nonlinear
Maxwell Equations (NM). I point out how the resulting theory ties to the Quantum Mechanics of
Correlated Electrons inasmuch as it provides a mesoscopic description of phenomena like nonre-
sistive charge transport, static magnetic flux tubes, and charge stripes in a way consistent with both
the phenomenology and the microscopic principles. In addition, I point at a bunch of geometric
structures intrinsic for the theory. On one hand, the presence of these structures indicates that the
equations at hand can be used as ‘probing tools’ for purely geometric exploration of low-dimensional
manifolds. On the other hand, global aspects of these structures are in my view prerequisite to in-
corporating (quantum) informational features of Correlated Electron Systems within the framework
of the Nonlinear Maxwell Theory.
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1. Introduction

The general goal of this paper is to examine broader ramifications of the Nonlinear
Maxwell Equations (NM) as introduced by me in 1992/1993 and further developed in
[11–13]. To this end, I first point out that the theory is considerably richer than that of the
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classical linear Electromagnetism. In particular, I describe here several distinct types of both
static and dynamic solutions on a spacetime of the formM3 × R. On the technical side,
I have essentially avoided heavier analysis as the solutions are either obtained by means
of elementary calculation, or are otherwise based on deeper analytic work described in
[13]. One should be aware that the possibilities opening in consequence of the introduction
of these new structures have not been fully exploited in this paper, thus postponing many
potential developments into the future.

More precisely, in the ‘dynamic’ part of the paper I display a solution in the form of
a charge-carrying electromagnetic wave. It is a soliton type wave that transports charge
with constant speed and without resistance. In addition, one notes existence of a specific
to dimension four nonlinear Fourier type transform—an interesting structure whose role
within the theory is twofold. On one hand, it can be used to find and analyze new solutions
of the Nonlinear Maxwell Equations. On the other hand, the transform defines an exotic
duality—a (quadratic) generalization of the (linear) Hodge-duality. Consequences of this
new duality for the four-geometry will be exploited in the future.

The second set of results in this paper is focused around the question of existence and
properties of static solutions. To this end, I first examine the situation on the Euclidean
three-space. In particular, one takes note of the occurrence of global structures in the form
of magnetic flux tubes as well as the so-called charge stripes. It is interesting from the
point of view of geometry that these objects exist in general only on three-manifolds whose
fundamental group is not finite. This is tied to the geometric fact that the nonlinear gauge
theory at hand induces an additional structure onM3—namely a taut codimension one
foliation. These global aspects of static solutions prompt an assumption of topological
point of view. Accordingly, I sketch the possibility of constructing ‘nonlinear cohomology’
that would account for a sort of ‘flux tube’ invariant of a three-manifold. The discussion
here is based on two particular examples that I feel provide an optimal illustration of the
underlying concept.

The Nonlinear Maxwell Equations, cf.(1)–(3) below, involve a vector potential that
encodes the electric and magnetic fields in the usual way as well as an additional scalarf .
The functionf contains information, extractable in a certain simple canonical way, about
the local value of thefilling factor (also known as the filling fraction). (The filling factor is
defined as the number of quanta of the magnetic field per electron charge in the first Landau
level. It is then natural and effective to think of the electrons as forming in conjunction with
the corresponding magnetic flux quanta composite particles—either bosons or fermions, or
Laughlin particles depending on the actual value of the filling factor.) It is thus postulated
that the filling fraction—typically an input of a microscopic theory that is always assumed
constant microlocally—is allowed to slowly vary in the coarser scale. In fact, it was shown
in [13] that NM predict occurrence of phase changes that lead to formation of vortices in
f , and a fortiori in the magnetic field. This picture conforms with the well known analogy
between the Quantum Hall Effects and the High-Tc Superconductivity. An inquisitive reader
might now point at the following seeming conundrum. The physical interpretation off as
a filling factor requires the presence of two-dimensional geometric structures that endow
us with a possibility of including the lowest Landau level in the basic dictionary. Thus, it
may appear a priori puzzling, how we are going to retain this interpretation off in 3 or 4
spatial dimensions? The answer is provided by the intrinsic structure of the NM themselves.
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On one hand, it is shown below that the filling factor variable may be completely factored
out of the equations when viewed in the complete four-dimensions of spacetime. Needless
to say, if one attempted to analyze suchf -free form in two-dimensions thef variable
would reemerge without change as it is there encoded in the magnetic fieldB = b/f ,
b = const. On the other hand, one notes that a remnant or a generalization of the filling
factor interpretation carries over to three-dimensions. Namely, the NM in three-dimensions
imply existence of a codimension one foliation of the three-space associated with the static
solutions. Moreover, one notes here that the NM do not a priori introduce any restrictions as
to the type of the resulting foliation—in fact any regular foliation and even foliations with
singularities introduced by degenerating leaves are admitted by the equations. However,
as already mentioned above the existence of solutions of a special type, namely the flux
tube type, implies geometrical restrictions on the foliation and topological restrictions on
the three-manifold. Indeed, in this case foliation must be taut. It also seems reasonable
to expect that the composite particle interpretation remains valid in this setting and the
number of participating electrons in each leaf is again determined byf , virtually leading
to the notion of aneffectiveLandau level.

In the last words of this section I would like to admit that, the subject matter at hand
being both new and inherently interdisciplinary as well as by way of my own background
and limitations, it is not always easy to pick the optimal terminology. Realizing I will
unavoidably fail to satisfy in this respect one group of readers or another, I can only ask
the readership to be as tolerant as they can afford and hope that in the end substance will
triumph over form.

2. Nonlinear Maxwell Equations in spacetime

In what follows, in order to get around rather tedious algebra while not compromising
our understanding of what is essentially involved, I present a shortcut style exposition of
the necessary calculations. I believe that readers who are well familiar with differential
geometry will find it easy to reinterpret this calculation in its natural invariant setting, while
those who are less familiar with the abstract setting may in fact appreciate its absence here.

Consider the following system of equations—the Nonlinear Maxwell Equations in the
form in which they have appeared in my previous papers

dFA = 0, (1)

δ(fFA) = 0, (2)

�f + a|FA|2f = νf, (3)

wheref is the real valued function andA is the electromagnetic vector potential, so that the
corresponding electromagnetic field isFA = dA. Here,a > 0 is a physical constant with
unit [T−2 m−2]; I will not discuss the precise physical interpretation ofa2 in this paper.
Further,d is the exterior derivative andδ = �d� its adjoint. Here, it is assumed that the
Hodge-star� and the D’Alembertian� are induced by the Lorentzian metric tensor on a
spacetime of 3+ 1-dimensions. Let me point out that assumingf = const and dragging it
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to zero one recovers the classical Maxwell equations. In this sense, all phenomena of the
classical Electromagnetism are included in the present model.

Now the goal is to better understand the essential ingredients of the NM in terms of the
classical field variables. To this end, let us say the spacetime is in fact the flat Minkowski
space (with the speed of light 1) so that in particular one can identify coefficients of the
electric field �E and the magnetic field�B with the coefficients of the curvature tensorFA by
the formula

FA = B1 dy ∧ dz + B2 dz ∧ dx + B3 dx ∧ dy + E1 dx ∧ dt

+E2 dy ∧ dt + E3 dz ∧ dt. (4)

For the sake of our discussion below it is good to keep in mind the well known fact that
the components ofFA are not Lorentz invariant. This property leads one to the derivation
of the Lorentz force, so that the latter one is logically independent of the particular form
of a gauge theory formulated in terms ofFA. In other words, the Lorentz force remains
unchanged and valid as one attempts to modify the field equations. With this understood,
let us continue the discussion ofEqs. (1)–(3).

It would be rather straightforward to rewriteEqs. (1)–(3)in the anticipated Maxwellian
form by following the usual procedures for translating(2) into the Ámpere and Gauss
laws after having replaced�E by f �E and �B by f �B. In fact, this would lead to an ad hoc
interpretation off as a material constant—a route taken in our older, one might saynaive,
paper[11]. However, this form of the system offers little insight as to the more essential
implications of the NM, and one needs to find a less obvious reformulation.

One notes thatEq. (2)may be equivalently written in the form

f δFA = FA(∇3+1f, ·), (5)

where∇3+1 stands for the gradient in spacetime. For a reason that will become clear later,
one identifiesFA with a skew-symmetric matrix in a standard way

F =




0 −B3 B2 −E1

B3 0 −B1 −E2

−B2 B1 0 −E3

E1 E2 E3 0


 .

It is important to note that by the miraculous property of skew-symmetric matrices in
four-dimensions, detF = �E · �B and

F−1 = 1
�E · �B




0 E3 −E2 B1

−E3 0 E1 B2

E2 −E1 0 B3

−B1 −B2 −B3 0


 = 1

�E · �B F̂ .

(I emphasize that̂F is not the matrix corresponding to the Hodge-dual ofFA in the given
metric with signature(+ + +−).) On the other hand, representing both the 1-forms and
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vectors as columns so that in particular

∇3+1f =




fx

fy

fz

−ft


 and δFA =



E1,t + B2,z − B3,y

E2,t + B3,x − B1,z

E3,t + B1,y − B2,x

E1,x + E2,y + E3,z


 ,

one checks directly that

FA(∇3+1f, ·) = F∇3+1f.

This enables us to rewriteEq. (5)in the form

F−1δFA = ∇3+1 ln (f ). (6)

It is perhaps worthwhile to realize that in this contextF is a fiberwise-linear mapping from
the tangent bundle to the cotangent bundle. Here one assumesf > 0 a.e. This conforms with
the principle that one will be consistently looking forstrongsolutions so that in particularf
may always be replaced with|f | in (1)–(3). Next one recalls that on one hand the first part
of the NM (1) is identical with the analogous part of the classical Maxwell equations and
it encodes the Faraday’s law of magnetic induction and the fact that there are no spatially
extensive magnetic charges. This gives the first four (scalar) equations below, namely(7)
and (8). On the other hand, by direct multiplication and regrouping in(6), one obtains four
further scalar equations that happen to radically modify the Ámpere law. Written in the
familiar three-space vector notation, the NM assume the form

∂ �B
∂t

+ ∇ × �E = 0, (7)

∇ · �B = 0, (8)(
∂ �E
∂t

− ∇ × �B
)

× �E + (∇ · �E) �B = −( �E · �B)∇ ln f, (9)

(
∂ �E
∂t

− ∇ × �B
)

· �B = −( �E · �B) ∂
∂t

ln f, (10)

(
∂2

∂t2
−∆

)
f + a(| �B|2 − | �E|2)f = νf, (11)

provided �E · �B �= 0. In fact, also the case when�E · �B = 0 is worth our attention and will
be discussed below. As much as one should avoid indulging in formal manipulations of
formulas, here the advantage of having the equations rewritten in several equivalent forms
is that they all lead to the discovery of new types of solutions, the existence of which would
be otherwise obscured by notation. This will become more evident in the following sections.

As already mentioned inSection 1, I postulate the following physical interpretation:f
is the spatially varying filling factor—a notion central to the modern composite particle
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theories. In fact, the canonical microscopic theory interpretation of the filling factor is valid
in two spatial dimensions only, in which case it signifies the ratio of the number of quanta
of the ambient magnetic field to the number of electrons in the first Landau level, cf.[7,17].
Moreover, the microscopic theory offers no hints as to the existence and relevance of an
analogous notion in the three-space. A description of the interaction of the electromagnetic
field with fermions in the first Landau level provided by the equations above is valid in the
mesoscopic scale. Here, as one ‘zooms out’ from the microscopic scale, the filling factor is
neither a rational number nor is it a constant anymore. In fact, as it has been communicated
in previous papers the spatially varying filling factor may assume the form of a vortex
lattice, cf. [13]. For the time being, this point of view is validated by the well known
analogy between the Quantum Hall Effect and the High Temperature Superconductivity
and it awaits experimental confirmation. Moreover, the NM extend the notion of the filling
factor to three spatial dimensions. However, as we will see below, the presence of the filling
factor introduces an especially interesting modification of the laws of Electromagnetism
only if the three-space comes equipped with a codimension one foliation. This latter fact
makes it possible to talk about Landau levels in a certain sense, anyhow. Finally,f can be
completely eliminated from the NM in 3+ 1-dimensions. (In general, this requires that the
first cohomology group of the spacetime vanishes.) In that case the NM can be written in
thef -free form

dFA = 0, d(F−1δFA)
# = 0, (12)

δ(F−1δFA)
# − |F−1δFA|2 + a|FA|2 − ν = 0, (13)

where # is the isomorphism of the tangent and the cotangent bundles given by the metric.
Indeed, under the assumption of vanishing first de-Rham cohomology,Eq. (6)is equivalent
to its integrability condition(12). Moreover, since the last scalar equation of the system can
be written in terms of d lnf in the form

δ d ln f − |d ln f |2 + a|FA|2 − ν = 0.

Eq. (6)also implies(13). Computation of the symbol shows that the system obtained in this
way is nonhyperbolic—in fact its degeneracy is of higher order. Thus, this form of the NM
appears impractical for any mathematical work, and an introduction of the dimensionless
scalarf is necessary also from the point of view of analysis. Nevertheless, as indicated in
Section 1and the discussion above, physical implications of the existence of anf -free form
of the NM are important.

3. Geometry behind the equations

The geometrical arena of the Maxwell equations consists of a spacetime, sayN , and
a principalU(1)-bundle, sayP , stack up aboveN . In addition, it seems any description
of the interaction of the electromagnetic field with fermions requires, at least within this
framework, a principal connection, i.e. a smooth (at least a.e.) distribution of horizontal
planes that is invariant with respect to the circle action. This distribution can be written as
kerA = ker fA for f �= 0. In addition, ifU(1) is to remain the elemental symmetry group of
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Electromagnetism, thenf must be constant along the fibers so that it effectively descends
to a function onN . In particular, within this dictionary one can construct a Kaluza–Klein
metric onP , which is given by

µA(X, Y ) = g(π∗X,π∗Y )+ aA(X)A(Y ),

where the unit ofa > 0 must be [T−2 m−2] if the unit of length onP is to be [m] and
the unit ofFA = dA is to remain, say, [T]. Let us say the corresponding Laplace–Beltrami
operator on forms is then∆µA = ∆A. Calculation shows that the condition

∆A(fA) = νfA,

is equivalent to the system ofEqs. (1)–(3), cf. [11].

4. Exotic duality

For the sake of discussion in this section, consider the NM on either a Lorentzian or a
Riemannian four-manifold as the metric signature plays a secondary role. In particular, it is
preferable to replace the�-notation with the∆-notation. Assume for the sake of simplicity
that the second cohomology group of the manifold is trivial. Omitting the constanta, write
the system one more time in the form

δ(f dA) = 0, (14)

−#f + |dA|2f = νf. (15)

Since(14) implies d(f�dA) = 0, one hasf�dA = dÃ so that

dA = ± 1

f
�dÃ, (16)

and the new formÃ satisfies adualsystem of equations

δ

(
1

f
dÃ

)
= 0, (17)

−#f + |dÃ|2 1

f
= νf. (18)

This is a functional transform reminiscent of the Fourier or the Backlund transforms,
notwithstanding the fact that all transforms are somewhat reminiscent of one another. In
particular, the resulting dualistic perspective has the expected property that trivial solutions
of one of the systems lead to more complex solutions of the dual system. To illustrate the
idea, let me now present a few examples of dual solutions onR4 with either the Euclidean
or the Minkowski metric as specified in the discussion.

Example 1. Let the metric be Euclidean and take dA = E dz ∧ dt , E = const, and
f = f (x, y). Eq. (14)is automatically satisfied and(15) assumes the form−fxx − fyy =
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(ν − E2)f so thatf = cos(k1x + k2y + α) for k2
1 + k2

2 = ν − E2 solves the problem.
Now dÃ = ±f (x, y)dx ∧ dy and it satisfiesEqs. (17) and (18).

Example 2. Departing for a while from the assumption of vanishing second cohomology,
let us reinterpret the previous example on a four-torus assuming periodicity of coordinates
(x, y, z, t) with period 2π . Note that the first bundle is necessarily nontrivial as the coho-
mology class [dA] �= 0. Let us allow the functionf drop its dependence ony so that, say,
f = cosx, provided the ‘right choice’ ofν has been made. Now, d̃A = d( sinx dy) is an
exact form so the second bundle is topologically trivial.

Example 3. Consider dA = B dx∧dy andf = f (z, t) so that(14)is satisfied. Let us now
look at the metric with signature(+ + +−) so that(15)meansftt − fzz = (ν −B2)f . The
general solution of this equation is a standing wave with variable amplitude. This pattern
is inherited by d̃A = f (z, t)dz ∧ dt (up to the sign again) which satisfies(17) and (18).

Example 4. Let us for a change begin on the other side and take, say, dÃ = e dz ∧ dt
andf = f (x, y). Again, the firstEq. (14)is automatically satisfied while(15) becomes
−fxx − fyy + e2/f = νf . As explained in[13] (see also remarks at the end ofSection
6 below) apart from the trivial constant solution, this problem also has a solution in the
form of a vortex lattice. In the latter case dA = f (x, y)dx ∧ dy satisfies(14) and (15)and
represents static magnetic flux tubes.

I emphasize that only the vector potentialA and the filling fraction variablef that appear
in the first set of equations have physical interpretation. Reassuringly, the presence of a
nontrivial f in Examples 1 and 3did not contribute anything unexpectedly strange to the
constant electric and magnetic fields in these examples, while it ‘introduced’ flux tubes in
Example 4. Although one could consider similar interpretation of the transformed vector
potentialÃ, just as one can for anyU(1)-connection, I feel this is uncalled for and would
probably be unjustifiable at this point. Nevertheless, the existence of the transform is a
remarkable fact whose possible applications to four-manifolds will be explored more thor-
oughly in the future. In a way, this new duality is a generalization of the regular Hodge-star
duality that may be compared to the projective generalization of the Euclidean reflection.
This analogy may be justified in the following way. Projective duality is induced by a fixed
quadratic form. What is the NM analog of that object? Introduce notationϕ = ln f . A di-
rect calculation shows that(14) and (15)may be written in the form of a system of quadratic
equations

δ dA+ �(dϕ ∧ �dA) = 0, (19)

−#ϕ − |dϕ|2 + |dA|2 − ν = 0. (20)

This form of the equation has one other advantage. Suppose one has found a solution(A, ϕ)

of (19) and (20). One can now use gauge invariance of the equations in the following way.
Let χ be a solution of the equation

δ dχ = −δA.
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The existence of a solutionχ follows from the Fredholm alternative when the metric is
positive definite, and it amounts to solving a linear wave equation in a Lorentzian metric.
One can now replaceA with A+dχ (and denote the resulting form byA again). In the new
gaugeδA = 0, so thatA in fact satisfies

#A+ �(dϕ ∧ �dA) = 0. (21)

The system that consists of(20) and (21)is either quasilinear elliptic or hyperbolic, depend-
ing on the metric. Solving the latter system may not be helpful at all in finding solutions of
the original(19) and (20), since one cannot guarantee that a solution satisfies the Lorentz
gauge conditionδA = 0. However, solutions of(19) and (20)a fortiori satisfy(20) and (21)
so that in particular they will obey all a priori estimates on the solutions of, say, quasilinear
hyperbolic systems. In particular, this point of view may justify the claim that the phenom-
ena described in this paper shed some light on the complex nature of quasilinear systems
of PDE of certain types in general.

5. Charge transport and charge stripes

I will now take full advantage of the(7)–(11)form of the NM. In analogy to the electro-
magnetic wave in vacuum, that one recalls is counted among the solutions of this system,
one wants to look for a solution with�E · �B = 0. In the end I will check that the new solution
of (7)–(11)in fact satisfies(1)–(3)which is not a priori guarantied. Make an Ansatz

�B = B1
∂

∂x
+ B2

∂

∂y
, �E = e

(
−B2

∂

∂x
+ B1

∂

∂y

)
, (22)

wheree,B1 andB2 are a priori functions of(x, y, z, t) that are smooth a.e. and neither one
of them vanishes identically. As an immediate consequence, one obtains that(7) and (8)are
equivalent to

B1,t = (eB1),z, (23)

B2,t = (eB2),z, (24)

(eB1),x + (eB2),y = 0, (25)

B1,x + B2,y = 0, (26)

which implies

e,xB1 + e,yB2 = 0. (27)

On the other hand,(9) and (10)are equivalent to

(B2,x − B1,y)eB1 = (eB2),xB1 − (eB1),yB1, (28)

(B2,x − B1,y)eB2 = (eB2),xB2 − (eB1),yB2, (29)

(−(eB2),t + B2,z)B1 + ((eB1),t − B1,z)B2 = 0. (30)
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Eqs. (23), (24) and (30)implies thate is in fact constant

e = ±1. (31)

Using(23) and (24)again, one obtains

B1 = B1(x, y, t + ez), B2 = B2(x, y, t + ez).

In particular, �B and �E are not compactly supported. At this point, the only condition left a
priori unfulfilled is the vanishing divergence condition. Thus, allEqs. (23)–(30)above are
satisfied if there is a functionψ = ψ(x, y, t + ez) such that

B1 = −ψy(x, y, t + ez), B2 = ψx(x, y, t + ez). (32)

Defining the electric and magnetic fields by(22)with e = ±1, so that in particular| �E| = | �B|,
and choosingf that satisfies the linear waveEq. (11), one obtains a solution of(7)–(11).

However, physical solutions must in addition satisfy the a priori more restrictive system
(1)–(3). ConsiderFA as given in(4). Eq. (1)is satisfied automatically since it is equivalent
to (7) and (8). On the other hand,(2) becomes

(fB2),x − (fB1),y = 0, (33)

(feB2),t − (fB2),z = 0, (34)

−(feB1),t + (fB1),z = 0, (35)

−(fB1),y + (fB2),x = 0. (36)

Now, (34) and (35)imply via (32) that

f = f (x, y, t + ez).

In particular,f,tt −f,zz = 0. Thus,(1)–(3)has been reduced to the following system of two
equations:

−f,xx − f,yy = νf, (37)

(fψ,x),x + (fψ,y),y = 0. (38)

The first equation above admits three types of classical solutions. Namely,

f =



A(t + ez) ln (x2 + y2), ν = 0,

A(t + ez) cos(k1x + k2y + α(t + ez)), ν = k2
1 + k2

2,

A(t + ez)exp(k1x + k2y), ν = −k2
1 − k2

2.

(39)

Observe that each solution effectively depends on one harmonic variable in the(x, y)-domain—
either, say,u = k1x + k2y or u = ln r2 = ln (x2 + y2). Thus,Eq. (38)is satisfied if

ψu = C(t + ez)

f (u, t + ez)
,
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for an arbitrary functionC of one variable. Therefore, in view of(32) one obtains three
types of solutions (redefiningC)

[B1, B2] =



C(t + ez)

r2 ln r2
[−y, x]

C(t + ez) sec(k1x + k2y + α)[−k2, k1]

C(t + ez)exp(−k1x − k2y)[−k2, k1]

, (40)

in correspondence with(39). Since one is looking for strong solutions, one has the freedom
to cut off pieces of the classical solutions (by restricting the domain) and to put them
back together. In this way, one obtains solutions that are either continuous or have jump
discontinuities but may be guarantied to remain bounded. Last but not least, it is physically
correct to interpret the divergence of the electric field as chargeρ and−(∂/∂t) �E + ∇ × �B
as the electric current. One checks that for solutions as above the(x, y)-component of
current vanishes while thez-componentj is equal to−eρ. More precisely, one obtains that
piecewise

eρ = −j =




4C(t + ez)

r2 ln 2r2

νC(t + ez) sec(k1x + k2y + α) tan(k1x + k2y + α)

−νC(t + ez)exp(−k1x − k2y)

, (41)

in correspondence with(39) and (40). In addition to the piecewise smooth distribution of
charge, one should include charge concentrated on singular surfaces where the electric field
has jump discontinuities as indicated by the distributional derivative∇· �E. Therefore, charge
is transported along thez-axis with the speede = ±1 and without resistance as the vector
of current is perpendicular to the electric field. Charge is mostly concentrated alongcharge
stripeswhere the electric and magnetic fields have singularities. The net current depends
on the particular choice of a (strong) solution. Of course, the theory does not tell us how to
solve the practical problem of electronics—namely, how to create conditions for a particular
functionC = C(t + ez), constantν and a desired mosaic of singularities to actually occur
in a physical system.

6. Static solutions and magnetic flux tubes

The classical Maxwell equations admit static solutions of two types only: the uniform field
solutions, and the unit charge or monolpole-type solutions, as well as superpositions of these
fundamental types of solutions. As we will see below, the nonlinear theory encompasses
a larger realm including the magnetic flux tube type and the charge stripe type solutions.
These additional configurations require nonlinearity and cannot be superposed, which gives
them more rigidity. In the next section we will see what can be said about the variety of
such solutions, while in this section I will only display a single example of this type. Apart
from the applicable goal, the idea is to present an example that possesses all the essential
features of the general class of solutions yet the required calculation is free of more subtle
geometric technicalities.
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Time-independent solutions of the NM posses physical interpretation only if they sat-
isfy the equations in the classical sense almost everywhere. Assuming that all fields are
independent of time(7)–(11)takes on the form

∇ × �E = 0, (42)

∇ · �B = 0, (43)

−(∇ × �B)× �E + (∇ · �E) �B = −( �E · �B)∇ ln f, (44)

(∇ × �B) · �B = 0, (45)

−#f + a(| �B|2 − | �E|2)f = νf, (46)

under the assumption that�E · �B �= 0 a.e. Adopt an Ansatz that the integral surfaces of the
planes perpendicular to the field�B are flat, say,

�B = b(x, y)
∂

∂z
.

One easily checks thatEqs. (43) and (45)are satisfied. Assume in addition that the electric
field is potential, i.e.

�E = ∇ψ(x, y, z), whereψz �= 0 a.e.,

so that(42) is satisfied. Remembering notationϕ = ln f , one calculates directly that

(∇ × �B)× �E = −ψzbx
∂

∂x
− ψzby

∂

∂y
+ (ψxbx + ψyby)

∂

∂z
,

while

(∇ · �E) �B = #ψb
∂

∂z
,

and

( �E · �B)∇ϕ = bψz

(
ϕx

∂

∂x
+ ϕy

∂

∂y
+ ϕz

∂

∂z

)
.

Thus,Eq. (44)is equivalent to the following system of three equations:

ψz(bϕx + bx) = 0,

ψz(bϕy + by) = 0,

b#ψ − ψxbx − ψyby − bψzϕz = 0,

and sinceψz �= 0 one obtains from the first two equations

ϕ(x, y, z) = ϕ1(x, y)+ ϕ2(z) and b = β exp(−ϕ1),

while the third equation assumes the form

#ψ + ∇ψ · ∇ϕ = 0. (47)
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At this point the NM have been reduced to the system of just two scalarEq. (46) and (47).
Denotef1 = expϕ1 andf2 = expϕ2 and assume in addition

ψ = ψ(z),

so that

ψ ′(z) = ε exp(−ϕ2) = ε

f2
.

It now follows from(46) and (47)that the triplet

�B = β

f1(x, y)

∂

∂z
, �E = ε

f2(z)

∂

∂z
, (48)

and

f (x, y, z) = f1(x, y)f2(z), (49)

is a solution of the NM if onlyf1 andf2 satisfy a decoupled system of semi-linear elliptic
equations

−f ′′
2 (z)− ε2

f2(z)
= ν2f2(z), (50)

−#f1(x, y)+ β2

f1(x, y)
= ν1f1(x, y). (51)

At this point, I would like to emphasize one more time that in a field theory one looks for
strongsolutions, i.e. solutions that satisfy equations in the classical sense almost every-
where. Typically, such solutions are smooth except for singularities supported on a union
of closed submanifolds. Furthermore, geometrically invariant derivatives of the resulting
fields in the distributional sense signify charges. With this understood, let us briefly turn
attention toEq. (50). One wants to avoid holding the reader hostage to the formal analysis
of this elementary equation which might be somewhat distracting. Thus, I have chosen to
briefly describe the solutions qualitatively leaving aside technical details that can be easily
reconstructed aside by the reader. First, one notes that ifν2 > 0 then a solution is concave,
while forν2 < 0 it will be convex for large values wheref 2

2 > −ε2/ν2. Assuming formally
thatf2 is a function off ′

2 (piecewise), one reduces(50) to the first-order equation

df2

dz
= ±

√
c − ν2f

2
2 − ε2 ln f 2

2 .

Thus, there are essentially two types of positive solutions, depending on the actual values of
constantsc, ε, ν2. The first type includes solutions that assume value 0 at a certain pointz0
and increase monotonously to infinity asz → ∞ as well as the symmetric solutions defined
between−∞ and some point, sayz0 again, where they reach 0. These solutions require
ν2 < 0 and they asymptotically look like exp(±(−ν2)

1/2z). One can use both branches
in order to put together a strong solution that forms a cusp or a jump discontinuity atz0.
The second type consists of solutions that are concave, rise to the highest peak atf2 = m,
whenc − ν2f

2
2 − ε2 ln f 2

2 = 0, and fall off to 0 on both sides in finite time while being
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differentiable in-between. Selecting the constants and combining both types of solutions
piecewise segment-by-segment one obtains strong solutionsf2 that in turn provide electric
fields according to formula(48).

Since, with the exception of the trivial constant solution, there are no global smooth
solutions, one concludes that either�E is constant or there exist charge stripes located at
planesz = const wheref2(z) has singularities. The distributional derivative is in each case
equal to the Dirac measure concentrated atz = const as above and scaled by the size of the
jump, and classical derivatives on both sides of the singularity. Even in absence of a jump,
the charge will switch from negative to positive thus forming what can be amenably called
a charge stripe. An example of this is shown inFig. 1.

It is much more difficult to figure out solutions of the second equation. I refer the reader
to [13] for a more thorough analysis, while here I will just briefly summarize my previous
findings. Solutions ofEq. (51)correspond to critical points of the functional

L(f1) = (1/2)
∫ |∇f1|2 + β2

∫
ln (f1)∫

f 2
1

,

which is neither bounded below nor above, so that one is looking at the problem of existence
of local extrema. The equation always admits a trivial constant solution. But, as it is shown

Fig. 1. An example of a strong solution of(50). f = f2(z) is a positive function, the electric field is given by
formula(48). The resulting charge distribution is obtained by evaluating∇ · �E. (In general,∇ · �E is understood
in the distributional sense.) Charge is concentrated along certainz = const planes. This is the basic appearance
of charge stripes—intertwining concentrations of positive and negative charges. (One should compare this static
picture with the description of moving charge stripes inSection 5.)
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Fig. 2. The luminance graph off = f1(x, y) that solves(51). The corresponding magnetic field on the right is
obtained via(48).

in [13], it also possesses nontrivial vortex lattice solutions. More precisely, ifβ is larger than
a certain critical value then there is a nonconstant doubly periodic functionf which satisfies
the finite difference version of(51)everywhere except at a periodic lattice of isolated points,
one point per each cell. In this way, a lattice of flux tubes, cf.Fig. 2, emerges as a solution of
the NM. For the time being, the proof of this fact relies on finite-dimensionality essentially,
and does not admit a direct generalization to the continuous-domain case. However, physical
parameters, like

∫
f 2

1 andβ, are asymptotically independent of the density of discretization.
Thus, I conjecture existence of the continuous-domain solutions that satisfy the equation a.e.
in the classical sense and retain the particular vortex morphology. Presently, the essential
obstacle to proving this conjecture is lack of a regularity theory for the discrete vortex
solutions. The proof in[13] is carried out in the (discretized) torus setting. One believes
that vortex type solutions exist on any closed (orientable) surface.

7. Topological quantum numbers

Every gauge theory comes equipped with an associated set of topological invariants—
usually characteristic classes of the bundles used to introduce the gauge field. Articles
[4–6] teach us how such topological invariants may be manifested in an electronic system
as observable quantum numbers. The Nonlinear Maxwell Theory is naturally equipped
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with two kinds of topological invariants. On one hand, one has the first Chern class of the
originalU(1)-bundle. Additionally, we will see below that in the case of static solutions
the NM give us an additional set of invariants defined directly by the foliated structure of
the underlying three-manifold. (In the discussion below, I generally assume for the sake of
simplicity thatM is a closed orientable manifold unless stated otherwise.) In this section
I will make an effort only to identify rather than exploit to the fullest the geometric and
topological ramifications of this nonlinear theory of Electromagnetism. To gain some initial
impetus, let us be guided by the following question: ‘What are the necessary and sufficient
conditions on a Riemannian three-manifoldM for the NM to admit a separation of variables
of the type seen in the previous section, i.e. for theEq. (51)to decouple so that its solutions
will generate magnetic flux tube type solutions onM ’?

A question of this type is typical in algebraic topology where one is asking about global
obstructions to the presence of certain algebraic factorization properties of analytic objects,
like linear differential equations as it is the case for, say, the de-Rham cohomology groups.
In our case, the equations are nonlinear, but the principle remains the same. The importance
of these questions for practical issues of Electromagnetism is twofold. First, one wants
to know how big is the set of possible configurations—especially in the absence of the
superposition principle. Secondly, I believe the topological invariants displayed below are
directly on target in an effort to explain and describe the nature of certain rigid structures,
like the Quantum Hall Effects, that physically occur in electronic systems.

First, it needs to be emphasized that the static field equations I want to consider, i.e. the
equations that descend from the four-dimensional spacetime via time-freezing coefficients,
are distinct from theEqs. (1)–(3)considered directly on a three-manifold. Secondly, the
Eqs. (42)–(46)are only valid on a Euclidean space. The geometry behind these equations
is easier to identify when they are rewritten in an invariant form that can be considered on
any three-manifold in a coordinate independent setting.

Fix a Riemannian metric onM with scalar product〈·, ·〉 extended to include measuring
differential forms. Denote byB andE the forms dual to the magnetic and electric field
vectors; recall notationϕ = ln f and puta = 1. The static NM assume the form

dE = 0, (52)

δB = 0, (53)

�(�dB ∧ E)+ (δE)B = −〈E,B〉dϕ, (54)

dB ∧ B = 0, (55)

#ϕ + |dϕ|2 + |E|2 − |B|2 + ν = 0. (56)

Eq. (55)is the familiar Frobenious condition on integrability of the distribution of planes
given by kerB. One always assumesB is nonsingular a.e. so that the distribution is a priori
also defined a.e. For convenience, it is assumed throughout this section that the foliation
determined by kerB is smooth. (It is quite clear that for the flux tube type solutions the
distribution extends through the singular points and is defined everywhere. At this stage,
however, it is hard to make a formal argument to this effect, hence the a priori assumption.)
The condition of smoothness implies that the three-manifoldM must have vanishing Euler
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characteristic. In particular, singular foliations, some of which may be associated with other
types of solutions of the NM, are excluded from the discussion below.

It follows that there is a 1-formα, known as the Godbillon–Vey form, such that

dB = α ∧ B.

This form is not defined uniquely. However, as is well known, d(α ∧ dα) = 0 and the
Godbillon–Vey (GV) cohomology class

[α ∧ dα]H3(M),

is uniquely defined. On a three-manifold this class can be evaluated by integration resulting
in a GV-number

Q =
∫
M

α ∧ dα.

This invariant poses many interesting questions that have not been fully resolved by ge-
ometers yet. Below, I will justify two observations. First, the condition of existence of the
magnetic flux tube solutions imposes both local and global restrictions on the foliation. Sec-
ond, magnetic flux tube solutions exist in topologically nontrivial situations with nonzero
GV-numberQ. This is formally summarized in the two propositions that follow. They are
far from the most general statements that can be anticipated in this direction, but are also
nontrivial enough to suggest a conjecture regardingquantizationof the GV-number that I
will formulate followingProposition 1.

Consider a priori a foliation given by kerB locally. First, one introduces a local coordinate-
patch(x, y, z) such that the foliation is given by the(x, y)-planes on whichz = const, and
letω be the unit-length normal 1-form, i.e.ω = dz/|dz|. In particular

B = β(x, y, z)ω,

for a certain functionβ = β(x, y, z). Let γ = g(x, y, z)dx ∧ dy ∧ ω denote the volume
element on a leaf, so that one has d�B = d(β(x, y, z)g(x, y, z)dx ∧ dy). Now, Eq. (53)
implies that there is a functionχ = χ(x, y) such that

β(x, y, z) = χ(x, y)

g(x, y, z)
.

A somewhat tedious calculation analogous to that in the previous section shows that when
B is of this form, the whole system(53)–(56)is reduced to(

ln
χ(x, y)

g(x, y, z)

)
x

= −ϕx,

(
ln

χ(x, y)

g(x, y, z)

)
y

= −ϕy, (57)

δE + 〈E,dϕ〉 = 0, (58)

#ϕ + |dϕ|2 + |E|2 −
(

χ(x, y)

g(x, y, z)

)2

+ ν = 0. (59)

Observe that in view of(57) in order to obtain factorization

ϕ(x, y, z) = ϕ1(x, y)+ ϕ2(z), (60)
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it is necessary that

g = g(x, y), (61)

i.e. a priori dependence ofg onz is dropped. Now, if(60) and (61)hold, thenEqs. (58) and
(59)can be (locally) decoupled—indeed, it suffices to selectE of the formE = e(z)dz. In
this case, one also has thatχ/g = b exp(−ϕ1) for a constantb and therefore,ϕ1 satisfies
the vortex lattice equation:

∆x,yϕ1 + |dϕ1|2 − b2 exp(−2ϕ1)+ ν = 0. (62)

However,(61) implies that the mean curvatureh of a leaf vanishes. Indeed, by definition

h = δ

(
1

|B|B
)

= −�d(g(x, y)dx ∧ dy) = 0.

These local coordinate-patch considerations lead us to the following.

Proposition 1. For the existence of flux tube type solutions—in the sense of existence of
factorization(60) and decoupling ofEq. (62)—it is necessary that the foliation given by
kerB be taut, i.e. the mean curvature of leaves must vanish. In particularπ1(M) must be
infinite.

Proof. The first part has been shown above. The second part follows from a result of
Sullivan[14] that he deduced from the result of Novikov on the existence of a closed leaf
that is a torus (cf.[8,16] for additional general material and references). �

In particular, there are no flux tube type solutions of the NM that would conform with the
Reeb foliation[9]. This is a practical issue since the Reeb foliation exists on a solid torus,
so that in principle it might be observed experimentally which would be inconsistent with
the theory at hand. This fact is also interesting for another reason. Namely, according to the
celebrated theorem by Thurston[15] each real number may be realized as the GV-number
for a certain codimension one foliation on the three-sphereS3. The known proof of this
result uses the Reeb foliation in an essential way. I do not know if this fact is canonical, i.e.
if the presence of the Reeb foliation is necessary for the result to hold, but if it turns out to be
so then excluding the Reeb foliation from the game should result in a reduction of the range
of the GV-number, possibly to a discrete subset of the real line. In such a case, the resulting
set of the GV-numbers accompanying flux tube type solutions of the NM would also be
discrete. This is consistent with my expectation that these invariants must be related with
(both the integer and the fractional) Quantum Hall Effects. Future research should bring a
resolution of this problem.

Another observation is that the factorization given by(60) and (62)does exist in topo-
logically nontrivial situations. More precisely, I want to consider solutions of the NM on
PSL(2, R) and its compact factors. These three-manifolds are equipped with interesting
codimension one foliations known as the Roussarie foliation[10]. Let the Lie algebra
PSL(2, R) be given by

[X, Y+] = Y+, [X, Y−] = −Y−, [Y+, Y−] = 2X.
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Pick a metric on PSL(2, R) in which the corresponding left-invariant vector fieldsX, Y+,
andY− are orthonormal and letµ, ν+, andν− be the corresponding dual 1-forms. One
checks directly that

dν− = µ ∧ ν−.

So that the distribution kerν− is integrable andµ is the GV-form of the resulting foliation.
In particular, one can introduce local coordinates(x, y, z) such that the vector∂z is parallel
to Y−, whileX andY+ are tangent to the(x, y)-planes (on whichz = const).

This foliation descends to compact factors of PSL(2, R) that can each be identified with
T1Mg—the total space of the unit tangent bundle of the hyperbolic Riemannian surface of
genusg that depends on our choice of the co-compact subgroup acting on PSL(2, R) by
isometries. Moreover, the GV-integrandµ∧ dµ is proportional to the natural volume form
on the three-manifold. As a result of this, the corresponding GV-numbers

Q =
∫
T1Mg

µ ∧ dµ = −2 Vol(Mg),

assume values in a discrete set. I want to look for solutions of the NM that satisfy the Ansatz

B = βν−. (63)

In particular (the Frobenious)Eq. (55)is satisfied automatically. Moreover, since d�B =
(Y−β)µ ∧ ν+ ∧ ν−, Eq. (53)implies

β = β(x, y). (64)

As before, one checks that(54) implies (58) as well asXϕ = −X ln β and Y+ϕ =
−Y+ ln β. In consequence, one again has(60) and assumingE = e(z)dz as before one
obtains(62). In consequence, the following holds true.

Proposition 2. The Roussarie foliations onPSL(2, R) and its compact factors satisfy the
factorization condition for the existence of magnetic flux tube type solutions in the sense
that the tangent distribution can be expressed askerB a.e. and one can reduce the NM to
the form(60)–(62).

The point is, of course, that due to homogeneity of the foliated structure a solutionϕ1 of
(62)obtained on one leaf of the foliation gives rise to a globally defined solution that satisfies
the NM over the whole manifold with, say,ϕ2 = 0 andE = 0. This ‘algebraic’ result will
become a rigorous PDE global existence type result as soon as the theory of vortex lattice
solutions is worked out analytically, and not just in the form of a (asymptotically stable)
discrete theory. Alternatively, the quantizied version of the NM may also be used in order
to provide the existential part of this geometric approach.

In a similar way one can obtain factorization(60) and (62)for other foliations, like the
natural foliation on sayS2 × S1.
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8. More on the physical framework of the NM

It is natural to ask if the NM descend from a Lagrangian functional depending on the
two variablesA andf , sayΦ(A, f ), via the Euler–Lagrange calculus of variations. The
answer is negative as one can easily see considering that in general a gradient must pass the
second derivative test:

δ2

δAδf
Φ = δ2

δf δA
Φ.

This condition cannot be satisfied by the expressions in(1)–(3) viewed as the gradient,
say ((δ/δA)Φ, (δ/δf )Φ), of an unknown functionalΦ. This suggests that the NM may
constitute just a part of a broader theory that would encompass additional physical fields. In
other words, theEqs. (1)–(3)would have to be coupled to some other equations via additional
fields. In addition, such coupling would have to induce only a very small perturbation of
the present picture that one believes is essentially accurate. Such possibilities may become
more accessible in the future.1 Among other, perhaps related goals is that of deriving the
NM equation directly from the microscopic principles.

The well known analogy between the Quantum Hall Effects and High-Tc Superconduc-
tivity suggests that there should exist vortex lattices involving the so-calledfilling factor
(microlocally a constant scalar) that plays a major role in the description ofComposite Par-
ticles. The NM describe exactly this type of a vortex lattice. Simulation and theory show that
this system conforms with the experimentally observed physical facts. It stretches the do-
main of applicability of the Maxwell theory to encompass phenomena such as theMagnetic
Oscillations, Magnetic Vortices, Charge Stripesthat occur in low-temperature electronic
systems exposed to high magnetic fields.

There are other systems of PDE that admit vortex lattice solutions and are conceptually
connected with Electromagnetism, like the well known Ginzburg–Landau equations valid
within the framework of lowTc type-II superconductivity, or the Chern–Simons extension of
these equations which, some researchers have suggested, may be more relevant to the Frac-
tional Quantum Hall Effect and/or High-Tc Superconductivity, cf.[18]. The free variables
of these equations are the so-calledorder parameter(a section of a complex line-bundle)
and aU(1)-principal connection, both of them containing topological information. In the
case of NM, all the topological information is contained in one of the variables, i.e. the prin-
cipal connection, while the other is a scalar function. An additional advantage of the NM
is in that it remains meaningful in 3+ 1-dimensions just as well as in the two-dimensional
setting. I would also like to mention that recently other researchers have introduced Nonlin-
ear Maxwell Equations of another type in the context of the Quantum Hall Effects, cf.[3].
The NM theory presented in this and the preceding articles of mine is of a different nature.
Finally, although this is far from my areas of expertise and the remark should be received as

1 In fact, a few months after completion of this work I have discovered that the theory admits a suitable defor-
mation that does not involve any additional fields, while possessing a Lagrangian formulation fit for quantization.
At the same time, the phenomena discussed here remain valid within the framework of this extension. These new
developments will be presented in forthcoming articles. I do not think this invalidates the possibility that there
may be some other couplings as mentioned above.
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completely ad hoc, I would also like to mention that yet another context in which foliations
come in touch with the Quantum Hall Effect is that of noncommutative geometry, cf.[1].

Let me conclude with a question that may suggest yet another point of view. Namely, is
there a coalescence between the nonlinear PDEs (in the form of the NM) and the (Quantum)
Information Theory? As it was pointed out, construction of error correcting codes may
unavoidably require manipulating quantum information at the topological level. Anyhow,
this is how I have understood the essential thought in[2]. Adopting this paradigm would
strongly suggest that the effective language of quantum computation should be constructed
at many levels, including that of the mesoscopic field theory in parallel with the language
derived from the basic principles as it is done now. Future research will likely better clarify
these issues.
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